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ABSTRACT

Histone modifications are important epigenetic regulators and play a critical role in develop-

ment. The targeting mechanism for histone modifications is complex and still incompletely

understood. Here we applied a computational approach to predict genome-scale histone

modification targets in humans by the genomic DNA sequences using a set of recent ChIP-

seq data. We found that a number of histone modification marks could be predicted

with high accuracy. On the other hand, the impact of DNA sequences for each mark is

intrinsically different dependent upon the target- and tissue-specificity. Diverse patterns are

associated with different repetitive elements. Unexpectedly, we found that non-overlapping,

functionally opposite histone modification marks could share similar sequence features.

We propose that these marks may target a common set of loci but are mutually exclusive

and that the competition may be important for developmental control. Taken together,

we show that our computational approach has provided new insights into the targeting

mechanism of histone modifications.
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1. INTRODUCTION

THE DISTRIBUTION OF HISTONE MODIFICATIONS is not uniform across the human genome. The active

genes are often marked with histone acetylation and H3K4me3 (Barski et al., 2007; Bernstein et al.,

2006; Liu et al., 2005; Wang et al., 2008), whereas H3K27 trimethylation often marks developmental

genes (Bernstein et al., 2006; Boyer et al., 2006; Lee et al., 2006). H3K9 di- and tri-methylations are often

associated with heterochromatin (Hall et al., 2002). Certain marks preferentially target the 50 gene starts,

whereas others are biased toward transcribed regions or gene deserts (Bernstein et al., 2006; Hall et al.,

2002; Liu et al., 2005; Pokholok et al., 2005). There are also distinct differences among differentially

methylated marks within the same group. H3K4me3 punctually marks the transcription start sites (TSS) of

most actively transcribed genes (Bernstein et al., 2006; Guenther et al., 2007; Liu et al., 2005; Pokholok

et al., 2005). Recently, it has been shown that H3K4me3 can also be recruited to genes that are poised

for activation (Core and Lis, 2008; Guenther et al., 2007). On the other hand, H3K4me2 and H3K4me1
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occupy broader domains and can be associated with either active or repressive genes (Bernstein et al.,

2006; Liu et al., 2005; Pokholok et al., 2005).

The regulation of histone modifications is complex. The enzymatic proteins can be recruited by tran-

scription factors to their targets (Robert et al., 2004). They may also recognize specifically modified

histones (Kouzarides, 2007). Furthermore, certain histone marks may be brought to the chromatin by

transcriptional machineries (Xiao et al., 2003). An initial histone modification mark can be spread over

neighboring domains (Talbert and Henikoff, 2006). Histone modification marks are not static but dynamic

and removal of existing marks can be regulated by cell division and by specialized enzymes (Kurdistani and

Grunstein, 2003; Lan et al., 2008; Shi et al., 2004).

The genomic DNA has been implicated in the targeting of histone modifications. H3K4me3 and H3

acetylation are highly correlated with CpG islands (Bernstein et al., 2006; Roh et al., 2005). In Drosophila,

the Polycomb complex PRC2 can be recruited to specific DNA elements called the Polycomb response

elements (PRE), where H3K27me3 is then synthesized (Ringrose et al., 2003). Although PREs in mam-

malian organisms have yet been found, in mouse embryonic stem (ES) cells H3K27me3 marked regions are

depleted with transposons (Bernstein et al., 2006). Repetitive elements are associated with heterochromatin

and H3K9 methylation (Hall et al., 2002; Slotkin and Martienssen, 2007), and diverse histone modification

patterns can be associated with different classes of repetitive elements (Martens et al., 2005). Non-coding

RNAs also play a role in the regulation of histone marks (Hall et al., 2002; Rinn et al., 2007; Slotkin and

Martienssen, 2007). It is thought that the role of DNA sequence may be more important in ES cells but

less so in differentiated cells (Bernstein et al., 2007). However, it is not yet known to what extent the DNA

sequence affect global histone modification patterns. This probably involves accumulation of many weak

interactions rather than distinct short sequence motifs (Straub and Becker, 2008).

Recently genome-wide locations of a number of histone modification marks in humans have been

mapped (Barski et al., 2007; Guenther et al., 2007; Lee et al., 2006; Pan et al., 2007; Schones et al., 2008;

Wang et al., 2008; Zhao et al., 2007). These data have provided an unprecedented opportunity to evaluate

the role of DNA sequence in histone modification locations in humans. We have previously developed

a computational model, called the N-score model, to predict nucleosome positions, and have found that

the model is able to detect discriminative sequence periodic patterns in nucleosome sequences compared

to linker sequences in yeast (Yuan and Liu, 2008). Here the N-score model is modified by incorporating

sequence features identified by other groups (Lee et al., 2007b; Peckham et al., 2007) and applied to predict

histone modification locations in humans.

2. RESULTS

2.1. A modified N-score model

The original N-score model was developed using a wavelet analysis approach (Yuan and Liu, 2008). A

commonly used approach for model improvement is combining the strength of multiple prediction models,

and it has been found that such an ensemble-based approach combining often performs better than the

best individual model (Hastie et al., 2001; Polikar, 2006). Several groups have developed computational

methods to predict genome-wide nucleosome positions by genomic sequences (Ioshikhes et al., 2006; Lee

et al., 2007b; Miele et al., 2008; Peckham et al., 2007; Segal et al., 2006). These methods have focused

on three aspects of sequence features: (1) sequence periodicity (Ioshikhes et al., 2006; Segal et al., 2006);

(2) counts of short nucleotide sequences (Peckham et al., 2007); and (3) structural parameters (Lee et al.,

2007b; Miele et al., 2008). We modified our original N-score model by integrating the wavelet features

in our model together with the sequence features identified in two different studies (Lee et al., 2007b;

Peckham et al., 2007). To test whether combining these sequence features improved model performance,

we applied this modifiedN-score model to predict nucleosome positions in humans, based on a recent ChIP-

seq dataset (Schones et al., 2008). The model was trained by using the highest and lowest nucleosome

scoring fragments from chromosomes 1–12 and evaluated based on those similarly selected fragments

from the other chromosomes. This new model perform very well (AUC D 0.90, where AUC represents the

area under the roc curve), slight better than the best performing individual model (Fig. S1). (See online

Supplementary Material at www.liebertonline.com.)
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We also tested the performance of our model by comparing model prediction and ChIP-seq data over a

number of contiguous regions. However, we were disappointed that the model did not perform well. We

also repeated the tests for the models that only contained wavelets, word counts, or structural parameters

features. All of these models performed similarly. The results from the ROC curves and over contiguous

regions do not contradict each other. Notice that an AUC score only measures the model performance

in discriminating the sequences at the most enriched and depleted loci, whereas the sequence features

associated with lower peaks may be less pronounced. Therefore, an AUC score by itself is not sufficient

for evaluating model performance. Previous studies have suggested that while the nucleosome immediate

downstream of a TSS is often positioned and predictable from DNA sequence (Ioshikhes et al., 2006;

Mavrich et al., 2008; Shivaswamy et al., 2008; Valouev et al., 2008; Yuan and Liu, 2008), the majority

of nucleosomes may be statistically positioned (Kornberg and Stryer, 1988; Mavrich et al., 2008; Valouev

et al., 2008). Our analysis here suggests a similar situation in humans.

We next applied this modified N-score model to predict the locations of histone modification marks in

humans, based on two recent datasets that in combination contained genome-wide locations of 18 methy-

lation and 18 acetylation marks (Barski et al., 2007; Wang et al., 2008). For each histone mark, an N-score

model was trained separately. The predictabilities for different markers are highly variable, where the AUC

varies from 0.66 to 0.96 (Table 1). Besides H3K4me3 (AUC D 0.96) there are a number of histone marks

that are associated with high predictability, including the well-studied marks H3K4me1, H3K4me2, and

H3K9ac (AUC D 0.90, 0.88, and 0.93, respectively; Fig. 1). On the other hand, a number of repressive

marks, such as H3K9me3 (AUC D 0.77), are not predicted well.

The high predictability associated with H3K4me3 was expected. In mouse ES cells, it has been found

that 95% of the H3K4me3 peaks fall into CpG islands, and 91% CpG islands contain H3K4me3 marks

(Bernstein et al., 2006). We compared the performance of our N-score model with a simple model using

CpG density as the only predictor. Strikingly, the performance of the two models is almost indistinguishable

(Fig. 1). However, for most other histone marks, the performance of the N-score model is significantly

better than using CpG density alone. In addition, our N-score model can detect the variation of the histone

modification patterns among different marks (Fig. 1). Notice that our model correctly predicts that the

FIG. 1. The performance of the modified N-score model for a few representative histone modification marks. (A) The

receiver operating characteristic (ROC) curves. The red curves correspond to the ROC curves obtained by using the

CpG frequency information alone. (B) The N-score enrichment score (EN). For comparison, the enrichment score

corresponding to CpG density is shown as the red curve in the left panel. Values higher than 200 are truncated to aid

visualization. (C) Sequence tag counts from the ChIP-seq experiment (bin size D 200 bp). Values higher than 20 are

truncated to aid visualization.
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TABLE 1. MODEL PREDICTABILITY (AUC SCORE) IS CORRELATED

WITH SIGNAL STRENGTH AND TARGET SPECIFICITY

Histone

mark AUC

Signal

strength

score

Target

specificity

score

Correlation

with gene

expression

H3K4ME3 0.96 0.37 0.37 0.29

POLII 0.95 0.29 0.33 0.26

H4K91AC 0.94 0.53 0.35 0.26

H3K9AC 0.93 0.20 0.37 0.29

H3K18AC 0.93 0.38 0.30 0.26

H2BK5AC 0.93 0.46 0.37 0.28

H2BK120AC 0.92 0.38 0.33 0.27

H3K27AC 0.92 0.45 0.34 0.27

H3K4AC 0.92 0.25 0.28 0.27

H4K20ME1 0.92 0.57 0.30 0.20

H2BK5ME1 0.91 0.34 0.24 0.15

H3K4ME1 0.90 0.47 0.27 0.07

H2BK20AC 0.90 0.34 0.28 0.28

H2A.Z 0.90 0.23 0.23 0.00

H4K5AC 0.88 0.24 0.26 0.25

H3K36AC 0.88 0.19 0.34 0.29

H3K4ME2 0.88 0.33 0.24 0.13

H3R2ME1 0.88 0.05 0.17 0.01

H4K8AC 0.87 0.20 0.25 0.28

H2AK5AC 0.86 0.12 0.18 �0.01

H3K27ME2 0.86 0.05 0.15 �0.14

H3K9ME1 0.86 0.31 0.20 0.24

H4K16AC 0.85 0.06 0.23 0.26

H2BK12AC 0.84 0.18 0.26 0.29

H3K23AC 0.83 0.12 0.17 �0.02

H3K79ME3 0.83 0.10 0.22 0.21

H2AK9AC 0.82 0.12 0.21 0.28

H3K36ME1 0.81 0.03 0.17 �0.07

CTCF 0.80 0.29 0.35 0.26

H3K27ME1 0.80 0.12 0.16 �0.06

H3K36ME3 0.80 0.20 0.21 �0.15

H3K27ME3 0.79 0.06 0.15 0.05

H4R3ME2 0.79 0.03 0.32 �0.11

H3K9ME3 0.77 0.13 0.20 �0.23

H3K14AC 0.77 0.03 0.23 �0.10

H3K9ME2 0.75 0.04 0.16 �0.21

H3K79ME1 0.74 0.02 0.21 0.14

H4K20ME3 0.71 0.22 0.38 0.10

H3R2ME2 0.71 0.03 0.23 �0.17

H3K79ME2 0.69 0.02 0.22 �0.22

H4K12AC 0.66 0.07 0.17 0.21

The last column shows the correlation between the promoter averaged (�1 to C1 kb from TSS)

N-scores and gene expression levels.
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H3K4me1 peak is narrower than and upstream of the H3K4me3 peak (Fig. S3). (See online Supplementary

Material at www.liebertonline.com.) Such differences cannot be predicted by the CpG density alone.

To assess the ability of our model to predict histone modification patterns over a contiguous region, we

calculated the N-score over a 150-kb region on chromosome 21, a region featured in reference (Guenther

et al., 2007). Chromosome 21 was not included in our model training. The number of tags mapped to

a genomic location is dependent upon the number of total reads, which are not uniform among different

histone marks. To highlight the significant peaks predicted from our model, the N-scores are converted to an

enrichment score as follows. First we calculate the p-values by one-sided z-tests over overlapping sliding

windows (window size D 400 bp, step D 20 bp). Then the enrichment score is defined as �10 � log10

(p-value; Fig. 1B). The predicted peaks indeed agree well with experimental data (Fig. 1C).

As mentioned in the above, our model did not perform well for a number of repressive marks, such as

H3K9me3. We suspected that the lower predictability might be correlated with higher noise (lower signal

strength), which might be caused by non-specific binding of the ChIP antibodies, insufficient sequencing

depth, or sequencing error. We used a Poisson distribution to model the noise background and estimated

the signal strength for each histone mark. The signal strength was highly variable (Table 1). Indeed, the

model predictability (quantified by AUC score) was strongly correlated with the signal strength (� D 0:71).

Whereas data noise is introduced by imperfect technology and can be substantially reduced with

technology development, it is also possible the distribution of a histone modification mark is neither

focal nor DNA sequence dependent. Therefore, we were interested to search for biological reasons related

to predictability. Most of the less well predicted markers appeared to occupy broader domains compared

to H3K4me3. To test whether there was a general trend, we quantified the target specificity of each histone

mark as the ratio of the tag counts for the top 10% significant bins over those in all significant bins. The

predictability was indeed significantly correlated with target specificity (� D 0:47).

2.2. Predicted promoter and enhancer histone modification patterns

Histone modifications play an important role in transcription control. The occupancy levels of nucleo-

somes and several histone modification marks are strongly correlated with gene expression (Barski et al.,

2007; Heintzman et al., 2007; Liu et al., 2005; Pokholok et al., 2005), even after controlling for the

confounding effect of transcription factor binding (Yuan et al., 2006). Consistent with this regulatory

role, distinct histone modification patterns have been found at promoters and enhancers (Barski et al.,

2007; Heintzman et al., 2007; Roh et al., 2007) (Fig. S2). (See online Supplementary Material at www.

liebertonline.com.) To normalize the variation due to sequence depth, the raw tag counts are converted to

an enrichment score, calculated as the log2-ratio of the observed tag counts over the number expected at

random. Thus, a negative value represents depletion of a histone mark, as is the case for H3K9me3

at promoter regions.

To investigate whether the DNA sequence plays a role in the establishment of the histone modification

patterns at promoters, we calculated the N-scores at genome-wide promoters and obtained an average

profile. The computational findings are generally in good agreement with experimental data (compare

Fig. 2A with Fig. S2A). Notably, the predicted H3K4me3 and H3K9ac scores are both concentrated near

TSS. In comparison, the peaks for H3K4me2 and H3K4me1 scores are broader and further away from

the 50 ends. Finally, the H3K9me3 scores are negative (less than expected at random) near TSS. To test

whether our sequence model was able to correctly predict the observed correlation between gene expression

and histone modification marks, we compared the N-score patterns for the most active and repressed

genes (Fig. 2B). For active marks including H3K4me3 and H3K9ac, higher expressed genes tend to have

higher N-score, whereas for H3K9me3 the relationship is reversed (Fig. 2B). However, the H3K4me2

and H3K4me1 patterns do not show any obvious trend as suggested by the data. To be quantitative, we

summarized the N-score over each promoter by averaging over a 2-kb window centered at the TSS and

calculated the Pearson correlation between these summary scores and gene expression levels (Table 1).

The quantitative results suggest that the H3K4me2 and H3K4me1 scores are also positively correlated with

gene expression, refining the qualitative conclusions from visualization. A notable discrepancy is that the

score for H3K27me3, a well-studied repressive mark, is slightly positively correlated with gene expression

(� D 0:05). Since the correlation with gene expression is confounded by nucleosome occupancy, which is

negative correlated with gene expression (� D �0:18), we also calculate the partial correlation between
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FIG. 2. The average N-score profiles over promoters and enhancers. (A) The average N-score profiles over all

promoters. (B) The average N-score profiles over promoters for highly expressed (expression index > 100; red curves)

and lowly expressed (expression index < 20, green curves) genes. (C) The average N-score profile for the DNase

hyper-sensitive sites excluding CTCF and PolII sites. (D) The average N-score profile for the p300 binding sites in

Hela cells.

N-scores and gene expression while controlling for nucleosome occupancy level, similar to our previous

work (Yuan et al., 2006). The results are nearly unaffected. A likely explanation for the discrepancy related

to H3K27me3 is that its pattern varies significantly from tissue to tissue. Such variation cannot be predicted

from sequences alone. The properties for H3K27me3 will be further discussed in the following.

An enhancer is a region of DNA that can regulate gene expression from a distance. An interesting

question is whether the function of enhancers is related to distinct histone modification patterns. However,

enhancer activities are cell-specific and it remains difficult to experimentally identify active enhancers at a

genomic scale. The histone modification patterns associated with enhancers have been recently investigated

by two groups (Barski et al., 2007; Heintzman et al., 2007). Heintzman et al. use p300 locations as the

key mark for putative enhancers and have investigated their associated signatures in Hela cells (Heintzman

et al., 2007), whereas Barski et al. (2007) choose DNase I hypersensitive (HS) sites excluding CTCF and

PolII sites and have investigated in the context of CD4C T cells (Barski et al., 2007). These two studies

have identified a number of similar patterns, including nucleosome depletion, hyper-acetylation, and high

level of H3K9me1, H3K4me1, and H3K4me2. On the other hand, the two studies have also resulted

important differences. Notably, H3K4me3 is found to be depleted in Heintzman et al.’s (2007) study but

enriched in Barski et al.’s (2007) study. Two possibilities have been suggested to explain this discrepancy.

First, there may exist different classes of enhancers associated with different histone modification patterns.

Second, the discrepancy may be related to the technical differences between ChIP-chip versus ChIP-seq.

We were interested to predict histone modification patterns associated with enhancers by using the DNA

sequence. To this end, we calculated the N-scores at the putative enhancers in both studies. For both sets

of putative enhancers, the H3K9ac, H3K4me1, and H3K4me2 scores are higher than random, whereas the

H3K9me3 score is depleted near the center (Figs. 2C and 2D), consistent with experimental data (Figs. S2C

and S2D). Interestingly, we found that the H3K4me3 score at the putative enhancers was also elevated for

both sets of putative enhancers, although more moderate compared to the promoters, suggesting that local

DNA sequence was favorable for H3K4me3.
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Our N-score analysis suggests significant differences between the two sets of putative enhancers. For

example, the H3K9me3 data show depletion in the HS sites but this bias is less obvious for the p300 sites.

The baseline for H3K4 methylations and H3K9 acetylation is higher at the HS sites than at the p300 binding

sites, suggesting HS sites are more open. Interestingly, these subtle differences in experimental data can

be predicted from the DNA sequences.

2.3. Histone modification patterns associated with repetitive elements

About half of the human genome consists of repetitive elements. It is increasingly clear that these

repetitive elements are not junk DNA, but rather play important roles in gene regulation (Slotkin and

Martienssen, 2007). Current technologies can identify the DNA sequences marked by a specific histone

modification, but it is very difficult to identify the locations of the marked loci as these DNA sequences

cannot be uniquely mapped to the genome. In fact, repetitive sequences are routinely excluded in standard

ChIP-chip and ChIP-seq data analyses. An advantage of our computational approach is that it is not affected

by sequence mappability or any other technical limitations, thus providing a useful tool for analyzing

functions of histone modifications in repetitive regions.

We applied our model to calculate the N-scores associated with eight types of repetitive elements: the

AT-rich and GC-rich elements, the Alu elements, the long-terminal repeats (LTR), the LINE1 and LINE2

repeats, and the Charlie and Mariner DNA transposons. For Charlie and Mariner, we analyzed their genome-

wide sites, whereas for the other repetitive sequences, we only analyzed the ENCODE regions because

they were more abundant. The distributions of N-scores are diverse among different classes of repeated

elements (Fig. 3A). For the Alu elements, the H3K9me2, H3K9me3, and H4K20me3 scores are all low,

but the H3K4me2 score is slightly above random. LINE1 and the DNA transposons Charlie and Mariner

are associated with high scores for both H3K9me2 and H3K9me3. On the other hand, LINE2 and LTR

elements are associated with high levels of H3K27me3 and H3K9me2. These predictions are qualitatively

similar to the experimental data in mouse (Martens et al., 2005). The most significant disagreement occurs

for H4K20me3, for which our model does not work well (Table 1).

We next analyzed the histone modification pattern at the juncture between the centromere and peri-

centromere, containing highly repetitive sequences characterized mainly by ˛-satellite sequences. The cen-

tromere is the assembly site for kinetochore during mitosis and its function is closely related to its unique

chromatin structure called the CEN chromatin (Schueler and Sullivan, 2006). However, high resolution

location analysis difficult because of the mappability issue mentioned above. Current studies rely on the

florescent in situ hybridization (Lam et al., 2006), which is limited by resolution.

We applied our N-score model to predict the histone modification pattern at a 10 bp resolution over a

100-kb region on the X-chromosome immediately adjacent to the centromere gap in the current genome

assembly. The higher-order ˛-satellite array DXZ1 marks the centromere territory, which ends at around

40 kb (relative to the genome assembly gap). Our N-score analysis shows that the entire region was

associated with high H3K9me2/me3 and low H3K4 methylation scores, consistent with heterochromatin

conformation (Fig. 3B). While the H3K9me prediction is consistent with experimental data, we found

disagreement between the predicted and observed H3K4me2 pattern. The experimental data show that

the H3K4me2 mark is enriched in the CEN chromatin (Lam et al., 2006); however, our model predicts

low H3K4me2 occupancy throughout centromeric and pericentromeric regions. Interestingly, a closer look

at the N-score pattern suggests subtle transitions at the edge of the DXZ1 boundary. On the inner side

of the boundary, the H3K4me2 score is slightly elevated and the H3K9me3 score is slightly decreased.

Although small in magnitude, these results suggest that the DNA sequence may be partially involved in

establishing the boundary between the CEN chromatin and heterochromatin. It appears that the predicted

pattern can be partially explained by using the ˛-satellite sequence alone. However, our model training

step used only ChIP-seq data in uniquely mappable regions, and that the association between N-score and

˛-satellite sequence could not have been expected.

2.4. Common sequence features shared by different histone modification marks

Analysis of high-resolution ChIP-chip data has shown that the distributions of different histone marks

are not independent with each other, but they rather form relatively few clusters (Liu et al., 2005; Wang
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(A)

(B)

FIG. 3. The N-score analysis over repetitive regions. (A) The average N-score values for different groups of repetitive

elements. (B) The N-score profiles over a 100-kb region striding the DXZ1 array boundary. Coordinate zero marks

the end position of the centromere gap on chromosome X. The position of the DXZ1 array elements is marked by the

black rectangle. The ˛-satellite percentage was calculated by averaging over 1-kb windows.
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et al., 2008). By clustering analysis, Wang et al. (2008) identified a histone modification backbone pattern

containing 17 different marks occupying the promoters of more than three thousand genes, and these

genes tend to have higher expressions than others. This backbone pattern strongly suggests high degree of

cooperativity among different histone marks.

We were interested to test whether sequence analysis could identify correlations that were not obvious

from simple comparison of the ChIP-seq data. We focused on a subset of 27 histone marks for which our

sequence had at least modest prediction power. The ChIP-seq data were clustered based on pairwise Pearson

correlation as in Wang et al. (2008), and the similarity between two sequence features was quantified by the

Pearson correlation between their corresponding N-scores. As a simple test for consistency, colocalized

marks shared similar sequences (Fig. 4). Interestingly, we also observed striking differences between

predicted and experimentally identified clustering patterns. Notably, H3K4me2 and H3K27me3 are anti-

correlated in the ChIP-seq data but their correspondingN-scores are highly correlated (� D 0:88). Although

less significantly, the correlation between H3K4me3 and H3K27me3 is also high (� D 0:67).

To explain the apparent discrepancy between ChIP-seq data and our model predictions, we hypothesized

that functionally opposite marks might be recruited to the same region but interact antagonistically. Such

a competition mechanism, if it exists, would provide a source for epigenetic variability under different

conditions. Indeed, we analyzed additional ChIP-chip data in two different studies and found support

for such a competition mechanism, as explained below. A recent ChIP-chip study has identified striking

differences in the H3K27me3 profiles at the HoxA gene cluster among different cell-types in humans

(Rinn et al., 2007), in a manner consistent with tissue-specific gene expression patterns. In particular, the

H3K27me3 data in the lung is very different from that in the foot (Fig. 5A), and their Pearson correlation is

negative (� D �0:3). Strikingly, the H3K4me2 data in the lung are highly correlated with the H3K27me3

data in the foot (� D 0:6), suggesting that the two histone marks share a common pool of potential

targets.

As indicated in Figure 5, the HoxA cluster is divided into two large-scale epigenetic domains, each

being activated in a specific tissue type. Constrained on a single domain, such as the left one, we found

good agreement between the predicted N-score and tiling array data (� D 0:33; Fig. 5B). However,

the correlation coefficient decreases sharply when both domains were included (� D 0:05). Within each

domain, we calculated the N-scores for the 10% most enriched and depleted probes (for H3K27me3) and

found that they indeed have very different distributions (AUC D 0.85). Thus, while our model is unable

to predict tissue-specific histone modification patterns, it appears to be useful for predicting the overall

targetable loci.

FIG. 4. A heatmap showing the Pearson correlation coefficients between different histone modification patterns.

(A) ChIP-seq data. (B) Sequence features. Notice the color scale difference between the two plots.
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(A)

(B)

FIG. 5. (A) The ChIP-chip data for H3K4me2 and H3K27me3 in different tissues over the HoxA cluster. (B) The

scatter plot of the predicted H3K27me3 N-score versus the H3K27me3 ChIP-chip data in foot over the sub-region

with [27090000 27170000].

Another pair of functionally opposite histone marks is H3K4me3 and H3K27me3, while the two marks

usually target different regions in differentiated cells, they co-occupy in ES cells at a number of genes, many

of which are developmental regulators whose expression is poised for activation (Bernstein et al., 2006;

Guenther et al., 2007; Lee et al., 2006; Pan et al., 2007; Zhao et al., 2007). By merging the H3K4me3

and H3K27me3 targets in two studies (Lee et al., 2006; Guenther et al., 2007), we identified a total

number of 1354 bivalent genes, that is, whose promoters were cooccupied by H3K4me3 and H3K27me3.

For each promoter, we defined a summary N-score by averaging over a window near TSS. We chose
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a wider window size for H3K27me3 (�5 to C5 kb from TSS) than for H3K4me3 (�1 to 1 kb from

TSS), as the H3K27me3 peaks were in general broader than H3K4me3. We found that 525 (or 39%)

of the bivalent genes were associated with a high H3K4me3-score (>3), compared to 18% expected at

random, 521 (or 38%) were associated with a high H3K27me3-score (>1), compared to 27% expected

at random, and 254 (or 19%) of the bivalent genes were associated with high N-scores for both marks,

compared to 7% expected at random. These differences are not substantial but highly statistically significant

(p-value < 10�20 in all three cases).

3. DISCUSSION

We have developed a computational model to predict histone modification patterns in humans from

genomic sequences. Our model is effective for the prediction of a number of histone marks, as evidenced

by the ROC curves, regional predictions, and promoter and enhancer analysis. In addition, the computational

method has also enabled us to explore the histone modification pattern at highly repetitive regions such as

the centromere and pericentromere.

On the other hand, our model performs poorly for a number of repressive marks such as H4K20me3.

Whereas new development of computational models and increased data quality are expected to further

improve the prediction power, it is also likely that DNA sequences may not be important for some of these

marks. We have identified two biological factors affecting the predictability of sequence-based models:

target-specificity and tissue-specificity. Whereas data noise is also an important limiting factor, its impact

can be removed in principle as technology advances.

We have detected similar sequence patterns between functionally opposite histone modifications exem-

plified by the H3K4me2 and H3K27me3 pair and hypothesized that these two marks are recruited toward

common genomic loci and compete against each other for targeting. Direct interactions between the H3K4

and H3K27 methylation and demethylation machineries have been detected and they form a positive

feedback loop. In particular, the H3K4 methyltransferase MLL can recruit the H3K27 demethylase UTX

(Lee et al., 2007a), whereas the H3K27 methyltransferase Ezh2 can recruit the H3K4 demethylase Rpb2

(Pasini et al., 2008). Such feedback loops may be sufficient for establishing stable and heritable binary

chromatin states (Dodd et al., 2007). Our analysis suggests that there is an extra layer of cooperativity,

that is, the epigenetic factors are recruited to common targets by the DNA sequences, thus facilitating

interaction efficiency.

A major computational challenge for detection of sequence signals associated with epigenetic factors is

that they are likely to involve the accumulation of many weak features (Sekinger et al., 2005; Straub and

Becker, 2008). Traditional methods for transcription factor binding motif discovery are not suitable for this

task because they rely on the assumption that there exist distinct short sequence patterns. New approaches,

such as those described in this paper, will undoubtedly provide new insights into the targeting mechanisms

for epigenetic factors.

4. METHODS

4.1. Data source

Genome-wide nucleosome scores in resting CD4C T cells were downloaded from Schones et al. (2008).

The nucleosome scores were calculated on a 10-bp sliding window as the number of sequenced reads

mapping to the sense strand 80-bp upstream of the window and anti-sense strand 80-bp downstream of

the window. The histone modification location data for CD4C T cells were downloaded from Barski et al.

(2007) and Wang et al. (2008). These datasets contain the number sequenced reads within 200- or 400-bp

summary windows. The DNA sequences were downloaded from Genome Browser based on based NCBI

Build 36 (hg18). The genome-wide TSS annotations were based on Refseq genes, including a total of

26,007 genes. Gene expression data were downloaded from the GNF Atlas 2 (Su et al., 2004). The repeat

elements were based on RepeatMasker (Smit, 1999). The Charlie and Mariner transposon locations were

downloaded from the RepBase (www.girinst.org/). The bivalent genes in human ES cells were determined
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by combining two genome-wide set of ChIP-chip data (Guenther et al., 2007; Lee et al., 2006). We called

a gene to be bivalent if its promoter was bound by both H3K27me3 and H3K4me3. The HoxA cluster

ChIP-chip data were obtained from Rinn et al. (2007). The HS sites in CD4C T cells were obtained

from Crawford et al. (2006). The 124 high-confidence enhancers in Hela cells were downloaded from

Heintzman et al. (2007). The histone modification data at repeated elements in mouse were downloaded

from Martens et al. (2005).

4.2. Training sets

For nucleosome positions, we selected the 1% highest and lowest nucleosome scoring windows in

Schones et al. (2008). For each window, a 131-bp DNA sequence centered at the midpoint of the window

was extracted. These sequences were divided into a training set, containing those from chromosomes 1–12,

and a testing set, containing the other sequences. For histone modifications, we selected the 1% non-empty

bins with the highest tag counts and also 10,000 random locations in the genome. Again, we extracted a

131-bp DNA sequence from each target or random location and trained our model using the sequences

from chromosomes 1–12.

4.3. A modified N-score model

We modified the original N-score model by incorporating wavelet features, word counts, and structural

parameters examined in three different studies (Lee et al., 2007b; Peckham et al., 2007; Yuan and Liu,

2008). A model for each histone mark was trained independently. The wavelet features were defined as

before (Yuan and Liu, 2008). Each training sequence was converted to 16 numerical series representing

the frequencies for each of the 16 dinucleotides. These numerical series were then transformed to wavelet

coefficients, which for a sequence S and a dinucleotide D were defined by

c
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i

fS;D.i=128/ 
j

k
.i=128/

where fS;D.i=128/ represented the average frequency of D at the i th, .iC1/th, and .iC2/th positions, and
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The wavelet energy coefficients were defined as the total variance of the wavelets at each level and used

as predictive variable in our model.

The word counts were derived as in Peckham et al. (2007). For each sequence, the frequencies of

all overlapping k-mers, where k from 1 up to 6, were enumerated. Complementary words were counted

together. In total there were 2772 such words, which were then ranked based on their discriminative power

evaluated by t-tests. The most significant 200 words were kept. The 20 DNA structural features (e.g., twist,

tilt) were calculated as in Lee et al. (2007b). Our final model could be written as follows:

q.S/ � log
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where xl.S/, yl .S/, zl .S/ represent the wavelet energies, word counts, and structural parameters for

the sequence S respectively. We used a stepwise procedure to select informative predictors as before

(Yuan and Liu, 2008). We defined the N-score as the normalized version of q.S/, given by N-score �

.q.S/ � E.q.S///=
p

Var.q.S//.
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4.4. Noise estimation

To estimate the noise level, the tag counts were first binned of width 200 bp. We used a Poisson

distribution to model the noise background, assuming a sequence tag was randomly picked from the

genome. A limitation of this simple noise model was that it ignored the fact that only uniquely mappable

sequence tags were retrieved in a ChIP-seq experiment. A more realistic noise model needs to exclude

unmappable regions. However, since such information was not publicly available, we only used a cruder

model instead. Due to concern of multiple hypothesis testing error, we used a stringent cutoff at p D 0:0001.

A rough estimate suggested that the corresponding false discovery rate was less than 15%. The bins

containing more tags than the cutoff value (which is different for each histone mark) were called significant.

The signal strength was quantified as the fraction of total tag counts that fell into the significant bins.

4.5. Correlation analysis for sequence features

To compare sequence features associated with different histone modification marks, we randomly selected

a set of DNA sequences from the human genome and apply each model to evaluate the corresponding N-

score. The similarity between a pair of models was quantified by the Pearson correlation of the associated

N-score values. Alternatively, the models could be compared based on the difference in regression coeffi-

cients. However, this latter approach was not favored since the estimated parameter values were numerically

unstable due to inter-correlation among the predicting variables. Mathematically speaking, our approach

can be viewed as a weak-topology for linear operators in a Banach space (Naylor and Sell, 1982). In order

to estimate statistical significance, we generated 20 null models by replacing the training marker sequences

with random sequences independently generated from the control sequences. The null distribution of the

Pearson correlation coefficients was estimated by correlations values among the null models. By using

a Gaussian distribution to approximate the null distribution, we determined a correlation cutoff at 0.27,

corresponding to a p-value of 0.05.
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